“Œ‹ž‘åŠw‘åŠw‰@ HŠwŒnŒ¤‹†‰È ƒGƒlƒ‹ƒM[¥Ž‘Œ¹ƒtƒƒ“ƒeƒBƒAƒZƒ“ƒ^[ / ƒVƒXƒeƒ€‘n¬ŠwêU

‰Á“¡E’†‘º Œ¤‹†Žº



ûü’J@—Y‘¾˜Y / Yutaro Takaya@(”ŽŽm(HŠw)CPh.D)
screen
–ðE
uŽt [‘ˆî“c‘åŠw—HŠwp‰@]
µãÙŒ¤‹†ˆõ [‘—§Œ¤‹†ŠJ”­–@lŠC—mŒ¤‹†ŠJ”­‹@\ ŽŸ¢‘ãŠC—mŽ‘Œ¹’²¸‹ZpŒ¤‹†ŠJ”­ƒvƒƒWƒFƒNƒgƒ`[ƒ€@¬ˆöŒ¤‹†ƒ†ƒjƒbƒg]
µãÙŒ¤‹†ˆõ [ç—tH‹Æ‘åŠw@ŽŸ¢‘ãŠC—mŽ‘Œ¹Œ¤‹†ƒZƒ“ƒ^[]
‹qˆõŒ¤‹†ˆõ [“Œ‹ž‘åŠw‘åŠw‰@HŠwŒnŒ¤‹†‰È Ž‘Œ¹EƒGƒlƒ‹ƒM[ƒtƒƒ“ƒeƒBƒAƒZƒ“ƒ^[]
Žå‚ÈŒ¤‹†ƒe[ƒ}
*“ñŽ_‰»’Y‘f‚Ì’n’†’™—¯‹Zp
*ŠC’êz•¨Ž‘Œ¹‚̬ˆöŒ¤‹†EŽ‘Œ¹—Ê•]‰¿E‘Iz/»˜B‹Zp
*…]ŠâΔ½‰ž‚Å”—‚é’n‹…ŠO¶–½Šˆ“®‚̉”\«
˜A—æ
y-takaya@@aoni.waseda.jp (please remove one g@h)
‘“àŽ¸“Ç•t‚«˜_•¶
1) ˜I“ªŠÏŽ@‰Â”\‚È–{–M‚Ì•ÊŽqŒ^z°|‹{茧ꠕôz°|., –ìè’B¶Eûü’J—Y‘¾˜YE‰’J˜a‘¥E¬ŽºŒõ¢E’†ŽRŒ’E‰Á“¡‘×_, Ž‘Œ¹’nŽ¿, vol. 59, IV-VI, 2009.
2) Œº•ŠâŽ¿‘Ñ…‘w“à‚Å‚ÌCO2’n‰»Šwƒgƒ‰ƒbƒsƒ“ƒOFCO2|…|Œº•Šâ”½‰žŽÀŒ±‚©‚ç‚ÌŽ¦´., ûü’J—Y‘¾˜YE’†‘ºŒª‘¾˜YE‰Á“¡‘×_, Journal of the Mining and Materials Processing Institute of Japan, vol.126C131-137, 2010.
3) –{–MÅ‘å‚ÌFe-CuŒ^ƒXƒJƒ‹ƒ“z°FŠâŽèŒ§Š˜ÎzŽR (VŽRz°)., ûü’J—Y‘¾˜YE–ìè’B¶E“¡‰iŒöˆê˜YE‰Á“¡‘×_, Ž‘Œ¹’nŽ¿, vol.61CXI-XII, 2011.
4) ƒnƒƒC“ì“Œ•û‰«‚É‚¨‚¯‚郌ƒAƒA[ƒX“D‚ÌŽ‘Œ¹ƒ|ƒeƒ“ƒVƒƒƒ‹•]‰¿., ‘å“c”¹ˆê˜YE“¡‰iŒöˆê˜YEûü’J—Y‘¾˜YE‰Á“¡‘×_, Ž‘Œ¹’nŽ¿, vol. 62, 197-209, 2012.
5) ŽÀŒ±“IŽè–@‚ÉŠî‚­z•¨ƒgƒ‰ƒbƒsƒ“ƒOis‘¬“x‚Ì—\‘ª|“ú–{‘“à‚É‚¨‚¯‚éCO2’™—¯Œó•â’n‘I’è‚ÖŒü‚¯‚½ˆêŽw•W|., ûü’J—Y‘¾˜YE’†‘ºŒª‘¾˜YE‰Á“¡‘×_, Journal of the Mining and Materials Processing Institute of Japan, vol.128, 94-102, 2012.
6) ‰»ŠwƒŠ[ƒ`ƒ“ƒO‚É‚æ‚郌ƒAƒA[ƒX“D‚©‚ç‚̃ŒƒAƒA[ƒX‰ñŽû•û–@‚ÌŒŸ“¢|ƒŒƒAƒA[ƒX“D‚ÌŠJ”­‚ÆHŠw“I—˜—p‚ÉŒü‚¯‚Ä|., ûü’J—Y‘¾˜YE•½o—²ŽuE“¡‰iŒöˆê˜YE’†‘ºŒª‘¾˜YE‰Á“¡‘×_, Journal of the Mining and Materials Processing Institute of Japan, vol.130, 104-114, 2014.
7) V‚½‚È[ŠC’êz•¨Ž‘Œ¹gƒŒƒAƒA[ƒX“Dh‚Ì’T¸‚ÆŠJ”­‚ÉŒü‚¯‚½Žæ‚è‘g‚Ý., “¡‰iŒöˆê˜YEˆÀì˜aFEûü’J—Y‘¾˜YE‘å“c”¹ˆê˜YE’†‘ºŒª‘¾˜YE‰Á“¡‘×_, Journal of the Mining and Materials Processing Institute of Japan, vol.131, 648-655, 2015.
‘ÛŽ¸“Ç•t‚«˜_•¶
1) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements., Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T. and Iwamori, H., Nature Geoscience, vol. 4, 535-539, 2011.
2) Post-drilling changes of fluid discharge and mineral deposition patterns and fluid chemistry in seafloor hydrothermal activity of the Iheya-North hydrothermal field, Okinawa Trough., Kawagucci, S., Miyazaki, J., Nakajima, R., Nozaki, T., Takaya, Y., Kato, Y., Shibuya, T., Konno, U., Nakaguchi, Y., Hatada, K. Hirayama, H., Fujikura, K., Furushima, Y., Yamamoto, H., Watsuji, T., Ishibashi, J. and Takai, K., Geochemistry Geophysics Geosystem, vol. 14, 4774-4790, 2013.
3) Geological, geochemical and social-scientific assessment of basaltic aquifers as potential storage sites for CO2., Takaya, Y., Nakamura, K. and Kato, Y., Geochemical Journal, vol. 47, 385-396, 2013.
4) Zircon U-Pb dating from the mafic enclaves in the Tanzawa Tonalitic Pluton, Japan: Implications for arc history and formation age of the lower-crust., Suzuki, K., Yamamoto, S., Sawaki1, Y., Aoki, K., Omori, S., Kon, Y., Hirata, T., Li, Y.-B., Takaya, Y., Fujinaga, K., Kato, Y. and Maruyama, S., Lithos, vol. 196-197, 301-320, 2014.
5) Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system., Goto, K.T., Anbar, A.D., Gordon, G.W., Romaniello, S.J., Shimoda, G., Takaya, Y., Tokumaru, A., Nozaki,T., Suzuki, K., Machida, S., Hanyu, T. and Usui, A., Geochimica et Cosmochimica Acta, vol. 146, 43-58, 2014.
6) Re-Os isotope geochemistry in the surface layers of ferromanganese crusts from the Takuyo Daigo Seamount, northwestern Pacific Ocean., Tokumaru, A., Nozaki, T., Suzuki, K., Goto, K. T., Chang, Q., Kimura, J.-I., Takaya, Y., Kato, Y., Usui, A. and Urabe, T., Geochemical Journal, vol. 49, 233-241, 2014.
7) Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough., Nakajima, R., Yamamoto, H., Kawagucci, S., Takaya, Y., Nozaki, T., Chen, C., Fujikura, K., Miwa, T. and Takai, K., PLoS ONE, vol. 10, e0123095, 2015.
8) Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: Implications for the potential distribution of REY-rich mud in the Indian Ocean., Yasukawa, K., Nakamura, K., Fujinaga, K., Machida, S., Ohta, J., Takaya, Y. and Kato, Y., Geochemical Journal, vol. 49, 621-635, 2015.
9) Chemical leaching of rare earth elements from highly REY-rich mud., Takaya, Y., Fujinaga, K., Yamagata, N., Araki, S., Maki, R., Nakamura, K., Iijima, K. and Kato, Y., Geochemical Journal, vol. 49, 637-652, 2015.
10) Dissolution of altered tuffaceous rocks under conditions relevant for CO2 storage., Takaya, Y., Nakamura, K. and Kato, Y., Applied Geochemistry, vol. 58, 78-87, 2015.
11) Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions., Ohta, J., Yasukawa, K., Machida, S., Fujinaga, K., Nakamura, K., Takaya, Y., Iijima, K., Suzuki, K. and Kato, Y., Geochemical Journal, vol. 50, doi:10.2343/geochemj.2.0435, 2016.
12) Discovery of extremely REY-rich mud in the western North Pacific Ocean., Iijima, K., Yasukawa, K., Fujinaga, K., Nakamura, K., Machida, S., Takaya, Y., Ohta, J., Haraguchi, S., Nishio, Y., Usui, Y., Nozaki, T., Yamazaki, T., Ichiyama, Y., Ijiri, A., Inagaki, F., Machiyama, H., Suzuki, K., Kato, Y. and KR13-02 Cruise members., Geochemical Journal, vol. 50, doi:10.2343/geochemj.2.0431, 2016.
13) Geochemistry of REY-rich mud in the Japanese Exclusive Economic Zone around Minamitorishima Island., Fujinaga, K., Yasukawa, K., Nakamura, K., Machida, S., Takaya, Y., Ohta, J., Araki, S., Liu, H., Usami, R., Maki, R., Haraguchi, S., Nishio, Y., Usui, Y., Nozaki, T., Yamazaki, T., Ichiyama, Y., Ijiri, A., Inagaki, F., Machiyama, H., Iijima, K., Suzuki, K., Kato, Y., KR13-02, MR13-E02 Leg 2 and KR14-02 Cruise members, Geochemical Journal, vol. 50, doi:10.2343/geochemj.2.0432, 2016.
14) Major and trace element compositions and resource potential of ferromanganese crust at Takuyo Daigo Seamount, northwestern Pacific Ocean., Nozaki, T., Tokumaru, A., Takaya, Y., Kato, Y., Suzuki, K. and Urabe, T., Geochemical Journal, vol. 50, doi:10.2343/geochemj.2.0430, 2016.
15) Rapid growth of mineral deposits at artificial seafloor hydrothermal vents., Nozaki, T., Ishibashi, J.-I., Shimada, K., Nagase, T., Takaya, Y., Kato, Y., Kawagucci, S., Watsuji, T., Shibuya, T., Yamada, R., Saruhashi, T., Kyo, M. and Takai, K., Scientific Reports, vol. 6, 22163, doi: 10.1038/srep22163, 2016.
16) Origin of felsic volcanism in the Izu arc intra-arc rift. Haraguchi, S., Kimura, J.I., Senda, R., Fujinaga, K., Nakamura, K., Takaya, Y. and Ishii, T., Contributions to Mineralogy and PetrologyCvol. 172(5), 25, 2017.
17) Depositional age of a fossil whale bone from Sao Paulo Ridge, South Atlantic Ocean, based on Os isotope stratigraphy of a ferromanganese crust., Nozaki, T., Takaya, Y., Toyofuku, T., Tokumaru, A., Goto, K. T., Chang, Q., Kimura, J.-I., Kato, Y., Suzuki, K., Augustin, A. H. and Kitazato, H., Resource Geology, vol. 67, 442-450. 2017.
18) Long-term reaction characteristics of CO2-water-rock interaction: insight into the potential groundwater contamination risk from underground CO2 storage., Takaya, Y., Nakamura, K. and Kato, Y., Resource Geology, vol. 68, 10.1111/rge.12147, 2018.
19) Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system?the Red Bore prospect, Western Australia. Agangi, A., Reddy, S. M., Plavsa, D., Vieru, C., Selvaraja, V., LaFlamme, C., Jeon, H., Martin, L., Nozaki, T., Takaya, Y. and Suzuki, K. Mineralium Deposita, https://doi.org/10.1007/s00126-017-0790-0, 2018.
20) The tremendous potential of deep-sea mud as a source of rare-earth elements., Takaya, Y., Yasukawa, K., Kawasaki, T., Fujinaga, K., Ohta, J., Usui, Y., Nakamura, K., Kimura, J.-I., Chang, Q., Hamada, M., Dodbiba, G., Nozaki, T., Iijima, K., Morisawa, T., Kuwahara, T., Ishida, Y., Ichimura, T., Kitazume, M., Fujita, T., Kato, Y., Scientific Reports 8, 5763. doi:10.1038/s41598-018-23948-5, 2018.
21) Signal preprocessing of deep-sea laser-induced plasma spectra for identification of pelletized hydrothermal deposits using Artificial Neural Networks. Yoshino, S., Thornton, B., Takahashi, T., Takaya, Y. and Nozaki, T., Spectra Chimica Acta Part B, 145, 1-7, https://doi.org/10.1016/j.sab.2018.03.015, 2018.
22) A new and prospective resource for scandium: evidence from the geochemistry of deep-sea sediment in the western North Pacific Ocean. Yasukawa, K., Ohta, J., Mimura, K., Tanaka, E., Takaya, Y., Usui, Y., Fujinaga, K., Machida, S., Nozaki, T., Iijima, K., Nakamura, K. and Kato, Y. Ore Geology Review, vol. 102, 260-267, 2018.
23) Unique environmental conditions required for dawsonite formation: Implications from dawsonite synthesis experiments under alkaline condition. Takaya, T., Wu, M. and Kato, Y., ACS earth and space chemistry, 3(2) 285-294, 2019.
24) Triassic marine Os isotope record reconstructed from a pelagic bedded chert succession, Sakahogi section, Mino Belt, southwest Japan. Nozaki, T., Nikaido, T., Onoue, T., Takaya, Y., Sato, K., Kimura, J.-I., Chang, Q., Yamashita, D., Sato, H., Suzuki, K., Kato, Y. and Matsuoka, A. Journal of Asian Earth Science: X, 100004, 2019.
25) Experiments on Rare-Earth Element Extractions from Umber Ores for Optimizing the Grinding Process. Yutaro Takaya, Meiqi Wang, Koichiro Fujinaga, Etsuo Uchida, Tatsuo Nozaki, Yasuhiro Kato., Minerals 9(4) 239, 2019.
‚»‚Ì‘¼‚Ì‘àE‰ðà
1) ûü’J—Y‘¾˜YF“ñŽ_‰»’Y‘f‚Ì’n’†‘Ñ…‘wˆ•ª‚ÉŠÖ‚·‚éŽÀŒ±“IŒ¤‹†DŽ‘Œ¹’nŽ¿C59ŠªC3†C254-255C2009D(¸“Ç‚È‚µ)
2) ûü’J—Y‘¾˜YC–ìè’B¶F2010”N“x Ž‘Œ¹’nŽ¿Šw‰ïŽáŽè‰ïH‹G„ŒŸ|ŠâŽèŒ§Š˜ÎzŽR‚̃XƒJƒ‹ƒ“‰»ì—pEz‰»ì—p‚ÌŠÏŽ@|DŽ‘Œ¹’nŽ¿C61ŠªC3†C249-254C2011D
3) ûü’J—Y‘¾˜YFŽÀŒ±“IŽè–@‚¨‚æ‚уVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŠî‚­CO2’n’†‘Ñ…‘w’™—¯‚Ì’·ŠúˆÀ‘S«—\‘ªDu•½¬22”N“x[“cŒ¤‹†•¬vŒ¤‹†•ñCŒö‰và’c–@l[“c’nŽ¿Œ¤‹†ŠC69|80C2011D
4) ‹à‘®Ž‘Œ¹ŠJ”­•ª–ì‚ÉŠÖ‚·‚élވ笃eƒLƒXƒg uz•¨Ž‘Œ¹z°”­Œ©Ž–—áWvC•½¬23”N4ŒŽC“Æ—§s­–@l Ζû“V‘RƒKƒXE‹à‘®z•¨Ž‘Œ¹‹@\Ciƒ`ƒŠEƒRƒWƒƒƒƒVzŽRCp113-124j
5) Takaya Y: Searching for the suitable site of CO2 geological storage in Japan. GMSI News Letter Vol.7, 10-10.
6) ûü’J—Y‘¾˜Y (2014) CO2’n’†’™—¯‚Ì‚¸“xˆÀ‘S«—\‘ª - ƒh[ƒ\ƒiƒCƒg‚ÌŒ`¬‚ª‚à‚½‚ç‚·’™—¯ˆÀ‘S«Œüã‚Ì’è—Ê“I•]‰¿ -D“S|ŠÂ‹«Šî‹à ŠÂ‹«•¬Œ¤‹†¬‰ÊŠT—vWD
7) REY-rich mud: A deep-sea mineral resource for rare earths and yttrium., Nakamura, K., Fujinaga, K., Yasukawa, K., Takaya, Y., Ohta, J., Machida, S., Haraguchi, S. and Kato, Y., Handbook on the Physics and Chemistry of Rare Earths, vol. 46, 79-127, 2015.
8) Έä‹PHE’¬“cŽkŽ÷E”Ñ“‡kˆêEŽR–{_•¶E–ìè’B¶E‹àŽqƒ“ñE‘å“c”¹ˆê˜YE“¡‰iŒöˆê˜YEˆÀì˜aFE‰º‘º—ÉE‚’J—Y‘¾˜YE“ìàV’q”üE“¡“‡Œb‰îE•è’q—YE”~Œ´is. u‚悱‚·‚©vu‚µ‚ñ‚©‚¢6500vYK16-01Œ¤‹†qŠC‚ÌŠT—v |“ì’¹“‡ŠCˆæEEZ“àƒ}ƒ“ƒKƒ“ƒmƒWƒ…[ƒ‹Lˆæ’²¸‚ÌöqŒ¤‹†‘¬•ñ|D [“c’nŽ¿Œ¤‹†Š”N•ñ 17, 1-28, 2016.
9) –ìè’B¶E”Ñ“‡kˆêE“¡‰iŒöˆê˜YE’†‘ºŒª‘¾˜YE‚’J—Y‘¾˜YEˆÀì˜aFE‘å“c”¹ˆê˜YE‰Á“¡‘×_. ‘æ4‚ÌŠC’êz•¨Ž‘Œ¹wƒŒƒAƒA[ƒX“DxDBuletin of the Society of Sea Water Science, Japan 70, 90-96, 2016.
10) ûü’J—Y‘¾˜YC•¶åYtH 96 (7), 86-88C“ú–{‹ßŠC‚ɃŒƒAƒA[ƒX‚ð”­Œ©D
11) ûü’J—Y‘¾˜YCCO2ƒoƒuƒŠƒ“ƒO‚É‚æ‚郌ƒAƒA[ƒX“D‚Ì»˜BŽè–@‚Ì\’zCˆê”Êà’c–@l “ú–{z‹ÆU‹»‰ï•¬ Œ¤‹†¬‰Ê•ñ‘ (•½¬30”N“x)C53-56D
ŽóÜ‚»‚Ì‘¼
1) •½¬24”N“xuƒGƒXƒyƒbƒNŠÂ‹«Œ¤‹†§—ãÜvŽóÜ (2012”N9ŒŽ)
2) •½¬28”N“xuŽ‘Œ¹’nŽ¿Šw‰ïŒ¤‹†§—ãÜvŽóÜ (2016”N6ŒŽ)
3) Nature Publishing Group, Scientific ReportsŽ‚É‚¨‚¯‚é2018 Journal Top 100 (14ˆÊ) ‚É‘I’èD˜_•¶‘è–ÚFThe tremendous potential of deep-sea mud as a source of rare-earth elements. (2019”N5ŒŽ)
4) John Wiley & Sons, Inc., Resource GeologyŽ‚É‚¨‚¯‚éTop Downloaded Article 2017-2018‚É‘I’èD˜_•¶‘è–ÚFLong-term reaction characteristics of CO2-water-rock interaction: insight into the potential groundwater contamination risk from underground CO2 storage. (2019”N6ŒŽ)
‹£‘ˆ“IŠl“¾Ž‘‹à‚È‚Ç
1) •½¬22”N“xF[“cŒ¤‹†•¬(Œv40–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼uŽÀŒ±“IŽè–@‚¨‚æ‚уVƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚ÉŠî‚­CO2’n’†‘Ñ…‘w’™—¯‚Ì’·ŠúˆÀ‘S«—\‘ªv
2) •½¬22”N“xFu‚‹´ŽY‹ÆŒoÏŒ¤‹†à’c Œ¤‹†•¬v (•ª’SŽÒ)
3) •½¬23”N“xFu‚‹´ŽY‹ÆŒoÏŒ¤‹†à’c Œ¤‹†•¬v (•ª’SŽÒ)
4) •½¬24”N“xFuƒGƒXƒyƒbƒN’n‹…ŠÂ‹«Œ¤‹†E‹ZpŠî‹àv (Œv50–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼uCO2’™—¯‘w“à‚Ńh[ƒ\ƒiƒCƒg‚ÍŒ`¬‚³‚ê‚é‚©H|CO2’n’†’™—¯‚Ì‚¸“xˆÀ‘S«•]‰¿‚ÉŒü‚¯‚½ŽÀ‘H“IŒ¤‹†|v
5) •½¬24”N“xFuŒö‰vM‘õ–@l“S|ŠÂ‹«Šî‹à ŠÂ‹«Œ¤‹†•¬v (Œv100–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼uCO2’n’†’™—¯‚Ì‚¸“xˆÀ‘S«—\‘ª|ƒh[ƒ\ƒiƒCƒg‚ÌŒ`¬‚ª‚à‚½‚ç‚·’™—¯ˆÀ‘S«Œüã‚Ì’è—Ê“I•]‰¿|v
6) •½¬25-27”N“xFu‰ÈŠwŒ¤‹†”ïŽáŽèŒ¤‹†B (‰Û‘è”Ô†F25820432)v(Œv429–œF‘ã•\ŽÒC•½¬26”N“x‚æ‚莫‘Þ) ‰Û‘è–¼uƒh[ƒ\ƒiƒCƒgŒ`¬E•Û‘¶ðŒ‚̉𖾂Ɍü‚¯‚½•ïŠ‡“IŒ¤‹†v
7) •½¬26-28”N“xFu“ú–{ŠwpU‹»‰ï“Á•ÊŒ¤‹†ˆõ (PD)v(Œv338–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼uƒh[ƒ\ƒiƒCƒgŒ`¬E•Û‘¶ðŒ‚̉ð–¾FCO2’n’†’™—¯‚Ì‚¸“xˆÀ‘S«•]‰¿‚ƉߋŽŠÂ‹«‰ð“Çv
8) •½¬28-30”N“xFu“ú–{z‹ÆU‹»‰ïŽŽŒ±Œ¤‹†•¬v(Œv221–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼uCO2ƒoƒuƒŠƒ“ƒO‚É‚æ‚郌ƒAƒA[ƒX“D‚Ì»˜BŽè–@‚Ì\’zv
9) •½¬29-33”N“xFu‰ÈŠwŒ¤‹†”ïVŠwp—̈挤‹†(Œ¤‹†—̈æ’ñˆÄŒ^)v(26,988–œ‰~F•ª’SŽÒ) ‰Û‘è–¼u‘¾—zŒn“V‘Ì‚É‚¨‚¯‚é…-ŠâΔ½‰žv
10) •½¬29-31”N“xFu‰ÈŠwŒ¤‹†”ïŠî”ÕŒ¤‹†(C)v(Œv468–œ‰~F•ª’SŽÒ) ‰Û‘è–¼u‘wó“Sƒ}ƒ“ƒKƒ“z°‚É‚¨‚¯‚郌ƒAƒA[ƒX‰ñŽûŽè–@‚ÌŠJ”­‚ÆŽ‘Œ¹ƒ|ƒeƒ“ƒVƒƒƒ‹•]‰¿v
11) •½¬30-31”N“xGu‰ÈŠwŒ¤‹†”ïŽáŽèŒ¤‹†v(Œv416–œ‰~F‘ã•\ŽÒ) ‰Û‘è–¼u“ñŽ_‰»’Y‘f‚ÌV‹KŽY‹Æ—˜—pŽè–@F’YŽ_‰–z•¨‰»‚ð—˜—p‚µ‚½’n”Õ‰ü—Ç‹Zp‚Ì\’zv